

Unique Paper Code

235301

€ learndu.in

Name of the Paper

MAHT 301-Calculus- II

Name of the Course

B.Sc. (Hons.) Mathematics- II

Semester

Ш

Duration

3 hours

Maximum Marks

75

Instructions for Candidates

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. All sections are compulsory.
- 3. Attempt any five questions from each Section.
- 4. All questions carry equal marks.

SECTION - I

1. (a) Let f be the function defined by :

$$f(x,y) = \begin{cases} \frac{x^2y}{x^4 + y^2} & \text{for } (x,y) \neq (0,0) \\ 0 & \text{for, } (x,y) = (0,0) \end{cases}$$

Is f continuous at (0,0)? Explain.

(b) The Cauchy-Riemann equations are

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$

where u = u(x, y) and v = v(x, y). Check if $u = e^{-x} cosy$, $v = e^{-x} siny$ satisfy the Cauchy-Riemann equations?

2. In physics, the wave equation is

$$\frac{\partial^2 z}{\partial t^2} = c^2 \frac{\partial^2 z}{\partial x^2}$$

and the heat equation is

Determine whether $z = e^{-1} \left(\sin \frac{x}{c} + \cos \frac{x}{c} \right)$ satisfies the wave equation, the heat equation, or neither.

- 3. An open box has length 3ft, width 1ft, and height 2 ft and is constructed from material that costs \$2/ft² for the sides and \$3/ft² for the bottom. Compute the cost of constructing the box, and then use increments to estimate the change in cost if the length and width are each increased by 3 in. and the height is decreased by 4 in.
- 4. If z = u + f(uv), show that

$$u\frac{\partial z}{\partial u} - v\frac{\partial z}{\partial v} = u$$

- 5. (a) Find the directional derivative of $f(x, y) = ln(x^2 + y^3)$ at $P_0(1, -3)$ in the direction of $v = 2\mathbf{i} 3\mathbf{j}$.
 - (b) Sketch the level curve corresponding to C = 1 for the function $f(x, y) = x^2 y^2$ and find a normal vector at the point $P_0(2, \sqrt{3})$.
- 6. Find the maximum and minimum values of $f(x, y) = 2 + 2x + 2y x^2 y^2$ over the triangle with vertices (0,0), (9,0) and (0,9).

SECTION-II

- 7. Evaluate $\iint \frac{dA}{1+y^2}$ over a triangle D bounded by x = 2y, y = -x and y = 2x
- 8. Evaluate $\int_0^2 \int_0^{\sqrt{4-y^2}} \frac{1}{\sqrt{9-x^2-y^2}} dxdy$ by converting to polar coordinates.
- 9. Find the volume V of the tetrahedron T bounded by the plane x + y + z = 1 and coordinate planes x = 0, y = 0 and z = 0.
- 10. Use spherical coordinates to evaluate $\iiint_D \frac{dxdydz}{\sqrt{x^2 + y^2 + z^2}}$ where D is the region given by $x^2 + y^2 + z^2 \le 3, z \ge 0$.

- 11. Compute the integral $\iiint (x^4 + 2x^2y^2 + y^4) dx dy dz$ over the cylindrical solid $x^2 + y^2 \le a^2$ with $0 \le z \le \frac{1}{\pi}$.
- 12. Use suitable change of variables to find the area of the region R bounded by the hyperbolas xy = 1 and xy = 4 and lines y = x and y = 4x.

SECTION-III

- 13. A force field in the plane is given by $\mathbf{F} = (x^2 y^2)\mathbf{i} + 2xy\mathbf{j}$. Find the total work done by this force in moving a point mass counterclockwise around the square with vertices (0,0), (2,0), (2,2), (0,2).
- 14.(a) Show that the force field $\mathbf{F} = \sin z \mathbf{i} z \sin y \mathbf{j} + (x\cos z + \cos y) \mathbf{k}$ is conservative.
 - (b) Verify that $\int_C [(3x^2 + 2x + y^2)dx + (2xy + y^3)dy]$, where C is any path from (0,0) to (1,1), is independent of path.
- 15. Use Green's theorem to find the work done by the force field $F(x,y) = (x + 2y^2)\mathbf{j}$

as the object moves once counterclockwise about the circle $(x-2)^2 + y^2 = 1$.

- 16. Evaluate surface integral $\iint_S \sqrt{1+4z} \, dS$ where S is the portion of the paraboloid $z = x^2 + y^2$ for which $z \le 4$.
- 17. Use Stokes' Theorem to evaluate $\oint_{\mathbb{C}} \mathbf{F} \cdot d\mathbf{R}$ where $\mathbf{F} = 2y\mathbf{i} 6z\mathbf{j} + 3x\mathbf{k}$ and \mathbb{C} is the intersection of the xy-plane and paraboloid $z = 4 x^2 y^2$, traversed counter clockwise as viewed from above.
- 18. Use the divergence theorem to evaluate $\iint_S \mathbf{F} \cdot \mathbf{N} dS$ where $\mathbf{F} = x^2 \mathbf{i} + xy \mathbf{j} + x^3 y^3 \mathbf{k}$ and S is the tetrahedron bounded by the plane x + y + z = 1 and the coordinate planes with outward unit normal vector N.

Join Us For University Updates

learndu.in

learndu.in

Learn_DU

Learn DU

